为解决齿轮泵的困油现象,通常在球墨铸铁泵盖上开设对称的卸荷槽,或向低压侧方向开设不对称卸荷槽,吸液侧采用锥形卸荷槽,排液侧为矩形卸荷槽,卸荷槽的深度也比液压工业中所用的齿轮泵要深。
球墨铸铁泵盖放置在刹车泵或离合器泵的储液罐上端。球墨铸铁泵盖上有橡胶密封垫防止刹车液漏出,水分进入。球墨铸铁泵盖可能是塑料或金属制成。形状有圆的,方的或长方的,由螺纹,螺栓或线箍定位。
泵体由吸水室和压水室两大部分组成。在吸水室的进口和压水室的出口分别是水泵进口法兰和出口法兰,用以连接进水管和出水管。在进口法兰和出口法兰上经常设有小孔,分别用以安装真空表和压力表。吸水室一般是一段逐渐收缩的锥形短管或等径直管,其作用是将水流引入叶轮,并向叶轮提供所需要的流态。锥管内常有一隔板,用以避免水流在进入叶轮前产生预旋。压水室的作用是收集叶轮流出的液体,并将液流引向出口。压水室的外形很像蜗牛壳,俗称蜗壳,叶轮就包在蜗壳里。
泵体的顶部设有排气孔(灌水孔),用以抽真空或灌水。在壳体的底部设有一放水孔,平时用方头螺栓塞住,停机后用来放空泵体内积水,防止泵内零件锈蚀和冬季结冰冻坏泵体。泵体由铸铁或铸钢等材料制造,其内表面要求光滑,以减小水力损失。
球墨铸铁泵盖用螺栓和泵体相连,其中部有膛孔,构成填料箱(涵),箱中加塞填料,或采用机械密封等形式高压柱塞泵,以防空气或水从轴和球墨铸铁泵盖之间的缝隙进入或流出。
球墨铸铁生产条件和球墨铸铁等温淬火工艺
{一}、球墨铸铁生产条件
球墨铸铁从诞生以来发展至今日,已经在黑色金属的应用领域占有一席之地。在生产,加工和制造球墨铸铁件的过程中遇到的技术问题均取得了多项创新成果。我国古代铁匠早在两千多年以前就已经成功制造出了具有球状石墨的铸铁,现代球墨铸铁生产过程中,球化处理和孕育处理工艺的应用使得球墨铸铁真正登上了工业应用的舞台。目前,球墨铸铁已经成为20世纪工业生产中最重要的金属材料之一,被广泛应用于生产与生活中的诸多领域。球墨铸铁是指向铁水中加入一定数量的球化剂和孕育剂,通过球化处理和孕育处理使铁水中的碳在凝固以球状石墨的形式析出的铸铁。1947年英国H.Morrogh找到了生产球墨铸铁的方法,向过共晶灰口铸铁中添加铈,当加入量大于0.02wt%时可以在凝固组织中获得球状石墨。
球墨铸铁的生产过程中,孕育处理工艺非常重要,孕育处理过程中孕育剂加入的种类、加入的时间、加入的方法、加入量、孕育剂的粒度和形态、保温时间等工艺条件都会影响铸件组织和石墨球的形态与分布,进而影响铸件质量。
优化的孕育处理工艺不但能提高铸件的质量和使用性能,降低铸件的废品率,还可以节约原材料,孕育剂和能源。所以,开展对球墨铸铁孕育处理工艺优化的研究具有重要意义,也对我国今后的钢铁工业发展有着深远的影响。
根据铸件生产条件,选择最合适的孕育剂和孕育剂加入方法并采用热分析法炉前快速检测铁水孕育效果,完成对孕育处理过程的动态调控,使球墨铸铁熔体达到良好冶金状态,促进石墨球化,增加铸件组织石墨球数量,细化晶粒,防止孕育衰退,减少铸件白口倾向,提高铸件的质量,降低铸件的废品率,减少原材料和能源的浪费。
{二}、球墨铸铁等温淬火工艺
1.设备
目前热处理使用的许多炉子和淬火槽都可用于球墨铸铁等温淬火。如果被处理的工件为加工后的零件.则需要使用保护气氛。此外在淬火时应能将工件快速转运至淬火炉中,才能得到所希望的机械性能。为满足仁述需要,通常使用盐一盐法对工件进行等温淬火。工件悬挂在挂具上,在盐浴炉中预热、加热、保温,然后迅速吊运到另一盐溶炉中进行等温淬火。淬火盐槽的尺寸应足够大,这样才能保证淬火时盐浴的温度一致,它的温差应在±5℃之内。
一般所用的淬火盐浴剂,大都由硝酸钠和硝酸钾配制而成。在使用时应及时清除盐浴中的污染,通常每周应对淬火剂清除污染一次。高温下不能使用标准的过滤系统,应将盐槽冷却至约200℃,在此温度下,标准过滤系统才可有效地使淬火剂得到满意的过滤。
2.工艺
要改善球墨铸铁件的等温淬火性能,一般应加大球墨铸铁中合金元素的含量。而且还应根据铸件的具体情况,及对铸件机械性能的要求,试验确定具体工艺。
球墨铸铁在奥氏体升温之前,应在350℃下预热,这样做的目的有二:一是除去湿气;二是减小热冲击,避免变形。
球墨铸件的奥氏体化温度,根据铸件的化学成分、原始组织及铸件壁厚及所需机械性能来确定。既要保证基体组织完全奥氏体化。不残留铁素体,又要避免奥氏体晶粒过大。一般奥氏体化温度为850~950℃。要改善淬火后的机加工性能,可将奥氏体化温度降至815~850℃,但这会使零件的抗磨损性能降低。过高的奥氏体化温度.会使奥氏体晶粒粗大,淬火后残留奥氏体量增加,并呈网状分布,导致机械性能降低。因而目前最常用的温度为880~900℃。
等温淬火停留的时间主要由过冷奥氏体完全转变为下贝氏体所需的时间来决定。若时间不足,必然有一部分过冷奥氏体来不及转变为下贝氏体,随后空冷时转变为淬火马氏体加少量残留奥氏体,这是不希望的。一般情况下,等温悴火时问和奥氏体化时间一样,工件断面厚度越大.则时间越长。
等温淬火温度对零件机械性能影响很大。象凸轮、蜗轮等需要高抗磨损的工件,应使用较低的淬火温度(250℃)较高的温度用于抗冲击和抗拉强度要求较高的传动零件。
当抗冲击和抗拉强度要求较高时,控制等温淬火的温度是非常重要的。每变化10℃,就会对抗冲击和延仲率产生明显影响。要控制淬火后工件的硬度.也应严格控制淬火时的温度。一般情况下.淬火温度取250~350℃之间,可获得较高的综合机械性能。
泊头市艺兴铸造厂(http://www.btyxzz.com)主要产品有搅拌机配件、灰铸铁件、减速机壳、机械加工、端面铣床加工等业务。
球墨铸铁泵盖放置在刹车泵或离合器泵的储液罐上端。球墨铸铁泵盖上有橡胶密封垫防止刹车液漏出,水分进入。球墨铸铁泵盖可能是塑料或金属制成。形状有圆的,方的或长方的,由螺纹,螺栓或线箍定位。
泵体由吸水室和压水室两大部分组成。在吸水室的进口和压水室的出口分别是水泵进口法兰和出口法兰,用以连接进水管和出水管。在进口法兰和出口法兰上经常设有小孔,分别用以安装真空表和压力表。吸水室一般是一段逐渐收缩的锥形短管或等径直管,其作用是将水流引入叶轮,并向叶轮提供所需要的流态。锥管内常有一隔板,用以避免水流在进入叶轮前产生预旋。压水室的作用是收集叶轮流出的液体,并将液流引向出口。压水室的外形很像蜗牛壳,俗称蜗壳,叶轮就包在蜗壳里。
泵体的顶部设有排气孔(灌水孔),用以抽真空或灌水。在壳体的底部设有一放水孔,平时用方头螺栓塞住,停机后用来放空泵体内积水,防止泵内零件锈蚀和冬季结冰冻坏泵体。泵体由铸铁或铸钢等材料制造,其内表面要求光滑,以减小水力损失。
球墨铸铁泵盖用螺栓和泵体相连,其中部有膛孔,构成填料箱(涵),箱中加塞填料,或采用机械密封等形式高压柱塞泵,以防空气或水从轴和球墨铸铁泵盖之间的缝隙进入或流出。
球墨铸铁生产条件和球墨铸铁等温淬火工艺
{一}、球墨铸铁生产条件
球墨铸铁从诞生以来发展至今日,已经在黑色金属的应用领域占有一席之地。在生产,加工和制造球墨铸铁件的过程中遇到的技术问题均取得了多项创新成果。我国古代铁匠早在两千多年以前就已经成功制造出了具有球状石墨的铸铁,现代球墨铸铁生产过程中,球化处理和孕育处理工艺的应用使得球墨铸铁真正登上了工业应用的舞台。目前,球墨铸铁已经成为20世纪工业生产中最重要的金属材料之一,被广泛应用于生产与生活中的诸多领域。球墨铸铁是指向铁水中加入一定数量的球化剂和孕育剂,通过球化处理和孕育处理使铁水中的碳在凝固以球状石墨的形式析出的铸铁。1947年英国H.Morrogh找到了生产球墨铸铁的方法,向过共晶灰口铸铁中添加铈,当加入量大于0.02wt%时可以在凝固组织中获得球状石墨。
球墨铸铁的生产过程中,孕育处理工艺非常重要,孕育处理过程中孕育剂加入的种类、加入的时间、加入的方法、加入量、孕育剂的粒度和形态、保温时间等工艺条件都会影响铸件组织和石墨球的形态与分布,进而影响铸件质量。
优化的孕育处理工艺不但能提高铸件的质量和使用性能,降低铸件的废品率,还可以节约原材料,孕育剂和能源。所以,开展对球墨铸铁孕育处理工艺优化的研究具有重要意义,也对我国今后的钢铁工业发展有着深远的影响。
根据铸件生产条件,选择最合适的孕育剂和孕育剂加入方法并采用热分析法炉前快速检测铁水孕育效果,完成对孕育处理过程的动态调控,使球墨铸铁熔体达到良好冶金状态,促进石墨球化,增加铸件组织石墨球数量,细化晶粒,防止孕育衰退,减少铸件白口倾向,提高铸件的质量,降低铸件的废品率,减少原材料和能源的浪费。
{二}、球墨铸铁等温淬火工艺
1.设备
目前热处理使用的许多炉子和淬火槽都可用于球墨铸铁等温淬火。如果被处理的工件为加工后的零件.则需要使用保护气氛。此外在淬火时应能将工件快速转运至淬火炉中,才能得到所希望的机械性能。为满足仁述需要,通常使用盐一盐法对工件进行等温淬火。工件悬挂在挂具上,在盐浴炉中预热、加热、保温,然后迅速吊运到另一盐溶炉中进行等温淬火。淬火盐槽的尺寸应足够大,这样才能保证淬火时盐浴的温度一致,它的温差应在±5℃之内。
一般所用的淬火盐浴剂,大都由硝酸钠和硝酸钾配制而成。在使用时应及时清除盐浴中的污染,通常每周应对淬火剂清除污染一次。高温下不能使用标准的过滤系统,应将盐槽冷却至约200℃,在此温度下,标准过滤系统才可有效地使淬火剂得到满意的过滤。
2.工艺
要改善球墨铸铁件的等温淬火性能,一般应加大球墨铸铁中合金元素的含量。而且还应根据铸件的具体情况,及对铸件机械性能的要求,试验确定具体工艺。
球墨铸铁在奥氏体升温之前,应在350℃下预热,这样做的目的有二:一是除去湿气;二是减小热冲击,避免变形。
球墨铸件的奥氏体化温度,根据铸件的化学成分、原始组织及铸件壁厚及所需机械性能来确定。既要保证基体组织完全奥氏体化。不残留铁素体,又要避免奥氏体晶粒过大。一般奥氏体化温度为850~950℃。要改善淬火后的机加工性能,可将奥氏体化温度降至815~850℃,但这会使零件的抗磨损性能降低。过高的奥氏体化温度.会使奥氏体晶粒粗大,淬火后残留奥氏体量增加,并呈网状分布,导致机械性能降低。因而目前最常用的温度为880~900℃。
等温淬火停留的时间主要由过冷奥氏体完全转变为下贝氏体所需的时间来决定。若时间不足,必然有一部分过冷奥氏体来不及转变为下贝氏体,随后空冷时转变为淬火马氏体加少量残留奥氏体,这是不希望的。一般情况下,等温悴火时问和奥氏体化时间一样,工件断面厚度越大.则时间越长。
等温淬火温度对零件机械性能影响很大。象凸轮、蜗轮等需要高抗磨损的工件,应使用较低的淬火温度(250℃)较高的温度用于抗冲击和抗拉强度要求较高的传动零件。
当抗冲击和抗拉强度要求较高时,控制等温淬火的温度是非常重要的。每变化10℃,就会对抗冲击和延仲率产生明显影响。要控制淬火后工件的硬度.也应严格控制淬火时的温度。一般情况下.淬火温度取250~350℃之间,可获得较高的综合机械性能。
泊头市艺兴铸造厂(http://www.btyxzz.com)主要产品有搅拌机配件、灰铸铁件、减速机壳、机械加工、端面铣床加工等业务。